v50 Steam/Premium information for editors
  • v50 information can now be added to pages in the main namespace. v0.47 information can still be found in the DF2014 namespace. See here for more details on the new versioning policy.
  • Use this page to report any issues related to the migration.
This notice may be cached—the current version can be found here.

Editing 40d:Screw pump

Jump to navigation Jump to search

Warning: You are not logged in.
Your IP address will be recorded in this page's edit history.

You are editing a page for an older version of Dwarf Fortress ("Main" is the current version, not "40d"). Please make sure you intend to do this. If you are here by mistake, see the current page instead.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
{{Quality|Exceptional}}
 
 
{{Machine_component|name=Screw pump|key=s|job=[[Pump operator]]
 
{{Machine_component|name=Screw pump|key=s|job=[[Pump operator]]
 
|construction=
 
|construction=
 +
* [[Enormous corkscrew]]
 +
* [[Pipe]]
 
* [[Block]]
 
* [[Block]]
* [[Enormous corkscrew]]
 
* [[Pipe section]]
 
 
|construction_job=
 
|construction_job=
 
* [[Architecture]]
 
* [[Architecture]]
Line 10: Line 9:
 
** [[Carpentry]]
 
** [[Carpentry]]
 
** [[Masonry]]
 
** [[Masonry]]
** [[Metalsmithing]]
 
 
|power=Needs 10 power.
 
|power=Needs 10 power.
}}{{av}}
+
}}
  
 
A '''screw pump''' is a small [[building]] that can lift liquids ([[water]] or [[magma]]) from one level below onto the same [[Z-level]] as the pump. It is two tiles by one tile in size, and it can be either manually operated by a [[dwarf]] with the [[pump operator]] job or by using [[gear assembly|gear assemblies]] connected to [[water wheel]]s and/or [[windmill]]s.  
 
A '''screw pump''' is a small [[building]] that can lift liquids ([[water]] or [[magma]]) from one level below onto the same [[Z-level]] as the pump. It is two tiles by one tile in size, and it can be either manually operated by a [[dwarf]] with the [[pump operator]] job or by using [[gear assembly|gear assemblies]] connected to [[water wheel]]s and/or [[windmill]]s.  
Line 50: Line 48:
 
* Pumps can also be used in conjunction with a [[water wheel]] or a [[windmill]] to become self-powered.
 
* Pumps can also be used in conjunction with a [[water wheel]] or a [[windmill]] to become self-powered.
 
* Active mechanisms connected to the pump will automatically start the pump; to prevent this either restrict liquid flow using floodgates or hatches, or put in a [[gear assembly]] linked to a [[lever]] to disconnect the [[power]].
 
* Active mechanisms connected to the pump will automatically start the pump; to prevent this either restrict liquid flow using floodgates or hatches, or put in a [[gear assembly]] linked to a [[lever]] to disconnect the [[power]].
* Adjacent pumps ''automatically'' transfer mechanical power to any other adjacent pump(s), no [[axle]] or [[mechanism]] is required.  If too many pumps are adjacent, there may be insufficient power to run them. This does '''not''' apply to pumps being manually operated by dwarves.
+
* Adjacent pumps ''automatically'' transfer mechanical power to any other adjacent pump(s), no [[axle]] or [[mechanism]] is required.  If too many pumps are adjacent, there may be insufficient power to power them.
 
* A hatch above the input tile (on the same level as the pump) that is linked to a trigger (a [[lever]] or [[pressure plate]]) makes an effective on/off switch for that pump.
 
* A hatch above the input tile (on the same level as the pump) that is linked to a trigger (a [[lever]] or [[pressure plate]]) makes an effective on/off switch for that pump.
 
* In order to build pumps in a "hanging" state, as in the stacked screw pump example (below), one of its tiles must be able to connect to a nearby machine, either already existing or designated to be built. If, when the screw pump's construction is completed, the supporting mechanism has not yet been completed, it will promptly collapse into its component parts.
 
* In order to build pumps in a "hanging" state, as in the stacked screw pump example (below), one of its tiles must be able to connect to a nearby machine, either already existing or designated to be built. If, when the screw pump's construction is completed, the supporting mechanism has not yet been completed, it will promptly collapse into its component parts.
 
* Pumps do '''not''' push liquids '''up''' additional Z-levels above them.  They only deliver water to their own level.  That is, if you direct the output of a screw pump into a 1-square space surrounded by walls, the water will not "overflow" the walls. Consequently, a pump will refuse to move liquid if the level it is pumping to is completely filled.  Higher levels can be achieved using a "pump stack" (below). (See [[Pressure]])
 
* Pumps do '''not''' push liquids '''up''' additional Z-levels above them.  They only deliver water to their own level.  That is, if you direct the output of a screw pump into a 1-square space surrounded by walls, the water will not "overflow" the walls. Consequently, a pump will refuse to move liquid if the level it is pumping to is completely filled.  Higher levels can be achieved using a "pump stack" (below). (See [[Pressure]])
* In order to safely pump magma, the pump must be made of [[magma-safe]] materials or the pump's components will melt or burn. Curiously, if the [[pipe segment]] is made of any [[metal]], then none of the pump's components will heat up, allowing a wooden corkscrew to pump magma without problems. This is likely a bug.
+
* In order to safely pump magma, you do not need to build a pump out of [[magma-safe]] materials, unless the open tile is going to be submerged in magma.
 +
** Exception: Wooden parts [[wear]] out fairly quickly when used to pump magma, eventually causing the pump to break down into the non-wooden parts. This is due to the magma heating the adjacent tiles to a temperature at which wood takes heat damage.{{verify}}
 
* Magma, which normally has no pressure, will behave like pressurized when pumped. For example, when pumped into an U-turn, magma will come out at the other end. Normal (non-pumped) magma would just pool at the lowest level. This may be either very useful (can be used to build pressure towers for magma) or deadly (forge level flooded with magma, because someone tried to pump magma into a volcano).
 
* Magma, which normally has no pressure, will behave like pressurized when pumped. For example, when pumped into an U-turn, magma will come out at the other end. Normal (non-pumped) magma would just pool at the lowest level. This may be either very useful (can be used to build pressure towers for magma) or deadly (forge level flooded with magma, because someone tried to pump magma into a volcano).
 
* Pump's pseudo-pressure doesn't work across diagonals. If there is a diagonal-only passage in your tunnel, liquids will seep slowly through it, instead of bursting through above their normal maximal speed, like they would if there was good passage.
 
* Pump's pseudo-pressure doesn't work across diagonals. If there is a diagonal-only passage in your tunnel, liquids will seep slowly through it, instead of bursting through above their normal maximal speed, like they would if there was good passage.
Line 72: Line 71:
 
=== Pumping up multiple levels ===
 
=== Pumping up multiple levels ===
 
[[Image:pumpsnc4.png|frame|right|(See numbered comments, left)]]
 
[[Image:pumpsnc4.png|frame|right|(See numbered comments, left)]]
The easiest way to do this is to stack the pumps directly on top of each other in alternating directions, also known as a '''pump stack'''. The first one pumps North to South, the one directly above it pumps South to North, the next one above that pumps North to South again, ad infinitum. Make sure to fully surround the area the water will fill with walls, including diagonals, or water will leak out very fast.
+
The easiest way to do this is to stack the pumps directly on top of each other in alternating directions, also known as a '''pump stack'''. The first one pumps North to South, the one directly above it pumps South to North, the next one above that pumps North to South again, ad infinitum. Even without walls surrounding the pumps, water still gets up with only minor leakage.
  
Adjacent pumps automatically transmit mechanical power. If the pumps are "open" (that is, built on channeled tiles) to each other across z-levels, then a stack only requires (sufficient) power to be transferred to one pump. All others will be powered by association with the first. You can transmit power to each pump by simply channeling out the floor at the front (aka output side).
+
Adjacent pumps automatically transmit mechanical power. If the pumps are "open" (that is, built on channeled tiles) to each other across z-levels, then a stack only requires (sufficient) power to be tranferred to one pump. All others will be powered by association with the first. You can transmit power to each pump by simply channeling out the floor at the front (aka output side).
  
 
'''See diagram, right''  
 
'''See diagram, right''  
Line 105: Line 104:
 
# If you thought ahead, you should only need one axle to connect the surface gear to the pump. A pump can be powered from any side.
 
# If you thought ahead, you should only need one axle to connect the surface gear to the pump. A pump can be powered from any side.
  
It is recommended that you connect a lever to one of your gears beforehand. The pump will start pumping as soon as it has power.
+
I recommend that you connect a lever to one of your gears beforehand. The pump will start pumping as soon as it has power.
  
 
You can change stuff around as the situation dictates, but that should get you started.
 
You can change stuff around as the situation dictates, but that should get you started.
Line 115: Line 114:
  
 
===No retaining walls===
 
===No retaining walls===
So long as the fluid is not dumped onto a floor tile*, a pump stack does not ''need'' retaining walls to hold the fluid in as it gets moved up - a powered pump will suck 100% of the water in the tile below it up the instant it shows up there.  So, as long as it's all powered '''and''' there's always room for the liquid to go, it's good.  However, once the power is shut off or the topmost output tile is blocked, all those tiles full of water (or magma!) flow normally.
+
A pump stack does not ''need'' retaining walls to hold the fluid in as it gets moved up - a powered pump will suck 100% of the water in the tile below it up the instant it shows up there.  So, ''so long as it's all powered'', it's good.  However, once the power is shut off, all those tiles full of water (or magma!) flow normally.
 
 
:''(* when a liquid is sitting on a floor tile, it has a chance to spread out to adjacent tiles)''
 
  
A combination of walls and (locked) doors can serve as retaining walls when necessary, and are sometimes faster and easier to (de)construct.
+
''(A combination of walls and (locked) doors can serve as retaining walls when necessary, and are sometimes faster and easier to (de)construct.)''
  
 
== Alternative uses ==
 
== Alternative uses ==
Line 126: Line 123:
  
 
=====Desalinization=====
 
=====Desalinization=====
[[Image:Screwpump-desalination.png|thumb|An example of how to desalinate water. Single-tilde water is salty, double-tilde water is pure.  Constructed walls and floor are not shown.]]
+
[[Image:Screwpump-desalination.png|thumb|An example of how to desalinate water. Single-tilde water is salty, double-tilde water is pure.  Constructed walls and floor are not show.]]
Screw pumps also act to desalinate any water which is pumped through them. This is very useful for providing a source of potable water in otherwise entirely salt-water regions. However, if desalinated water comes into contact with natural walls or natural floors, other saltwater, or passes through a saltwater [[aquifer]] level (even if that has been sealed by [[smoothing]]), the water will be ''re''salinated.  So any freshwater cistern (tanks) must be entirely constructed to the full level of the water, with no natural floors or walls that will come in contact with the de-salinated water.
+
Screw pumps also act to desalinate any water which is pumped through them. This is very useful for providing a source of potable water in otherwise entirely salt-water regions. However, if desalinated water comes into contact with natural walls or natural floors, other saltwater, or <s>passes through a saltwater [[aquifier]] level (even if that has been sealed by [[smoothing]])</s> (Unclear as to what this means), the water will be ''re''salinated.  So any freshwater cistern (tanks) must be entirely constructed to the full level of the water, with no natural floors or walls that will come in contact with the de-salinated water.
  
 
=====Plumbing management=====
 
=====Plumbing management=====
Line 142: Line 139:
 
{{Water FAQ}}
 
{{Water FAQ}}
  
{{Category|Machine components}}
+
[[Category:Machine components]]

Please note that all contributions to Dwarf Fortress Wiki are considered to be released under the GFDL & MIT (see Dwarf Fortress Wiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)

Templates used on this page: